

はじめに	
標準付属パーツ	4
オプション	4
操作	5
LED	5
IMU04 補正を利用して記録する	
IMU04 の各チャネルを記録する(IMU04 補正なし)	7
VBOX 以外の CAN データロガーと共に IMU04 を使用する場合	
VBOX SETUP ソフトウェアを使い IMU04 を設定する	11
User PolledCAN モードおよび Timed CAN モードのデータフォーマット	13
データフォーマット	15
セットアップパラメータ表	16
ファームウェアのアップグレード	
ユニット寸法	
スペック	
ピン配列	
CAN BUS データフォーマット	

はじめに

Racelogic 社 製 IMU04 は 3 軸のジャイロセンサー及び加速度センサーモジュールです。Z 軸(ヨー)、Y 軸(ピッチ)、X 軸(ロール)の 角速度と前後加 速度(X 軸)、横加速度(Y 軸)垂直加速度(Z 軸)の合計 6 軸の測定ができます。 IMU04 は IP67 に準拠した防水・防塵対策が施されていますので、ボート(船舶)での使用や過酷な環境での使用にも最適です。

特徴

- ∃-レート ±450 °/s
- 加速度 ±5g(3軸)
- ヨーレート分解能 0.014°/s
- 加速度分解能 0.15mg
- ピッチ角精度 0.1° (RMS) ヨー角精度 0.5° (RMS) (VBOX3i と同時に使用した場合に計測可能)
- 内部温度測定
- CAN バス インターフェース x 2
- RS-232 シリアルインターフェースを利用してセットアップ
- 24 ビットの分解能
- VBOX3i-V3 と一緒に使うことで、IMU04 補正を利用可能
- RS-232 シリアルインターフェースを利用してセットアップ
- 24ビットの分解能
- 防水性能 IP67 適合

標準付属パーツ

名称	数量	Racelogic パーツ No.
IMU04	1	VBIMU04
CAN ケーブル(Racelogic VBOX 接続用)	1	RLCAB120
ユニットセットアップ用ケーブル	1	RLCAB030-S

オプション

名称	数量	Racelogic パーツ No.
IMU04 補正用ケーブル	1	RLCAB119
CAN 出力ケーブル	1	RLCAB034-S

操作

IMU04 の入力電圧範囲は 7V~30V です。VBOX データロガーと共に使用する場合は RLCAB120 または RLCAB119 ケーブルで電源を取ります。 同時に他の電源に接続された際に、最大入力電圧の 30V DC を超えないように注意して下さい。

LED

LED	色		
Power	赤	オレンジ	禄
	初期起動中.	温度チェック中 温度が稼働範囲を超えた場合、常時点灯しま す	正常稼働中
Comms	消灯	オレンジ	禄
	通信していない	IMU 補正を利用中 RS232 で VBOX と通信しています	CAN で通信中

IMU の車両への設置

IMU は車両軸上の重心点近くに取り付けを行うと最適な結果を得る ことができます。 また、IMU は水平に取り付けることが重要なポイントです。

GPSのIMU補正を利用する場合は、IMUとGPSアンテナの距離は5cmの精度で測定して、入力してください。

IMU は動かないよう、車両にしっかりと固定してください。

VBOX で IMU04 の各チャネルを記録する(IMU04 補正なし)

必要な物

- □ IMU04 (本体, 後述の Racelogic CAN mode に設定してください)
- □ RLCAB120 (付属品)
- □ VBOX データロガー(VBOX3i, VBOX2-SX など)

1. VBOX および IMU04 を車両に搭載します。なるべく車両の中心軸上で、 ホイールベースの中間に、しっかりと取り付けて下さい。

2. IMU04 を VBOX の "CAN" コネクタに接続します。接続には RLCAB120 を利用します。

3. VBOX の電源を入れます。必ず配線後に電源を入れてください。

4. PC と VBOX を接続し、VBOXSetup ソフトウェアを起動します。 "Channels" 画面に入り、"IMU"タブをクリックします。

5. Log to memory card のチェックマークを回にしてください。 計測中に PC にデータを表示するには、Send over serial のチェックマーク を回にしてください。

2.1.21							- 0	×
⑦ Ch	anr	nels	Res	can modules	Reset modules	Configuration 👻		annel 🗸
Standard Inter	mal A/D	Internal CAN Inpu	ut Inter	nal IMU Attitude	Serial IMU	or ^{IMU}		
30006 - F/W 10	0.03							
	Char	nel		logt	o memory card	✓ S	end over serial	
	YawF	Rate			~		\checkmark	
	X_Ac	cel			~		\checkmark	I .
	Y_Ac	cel			\checkmark		\checkmark	I .
2	Ten	np			~		\checkmark	I .
	Pitchl	Rate			\checkmark		\checkmark	
	RollR	late			~		\checkmark	1
	Z_Ad	cel			~		\checkmark	1

VBOX3i で IMU04 補正を利用して記録する

必要な物

- □ IMU04 (本体)
- □ RLCAB119 IMU 補正用接続ケーブル(別売オプション)
- □ VBOX データロガー(VBOX3i-V3 以降 が必須です。V3 でない場合は有償ハードウェアアップグレードが必要です)

1. VBOX および IMU04 を車両に搭載します。なるべく車両の中心軸上で、 ホイールベースの中間に、しっかりと取り付けて下さい。

2. IMU04 を VBOX の "AIN" コネクタ(25 ピン Dsub)に接続します。接続 には RLCAB119 ケーブルを使用します。

3. VBOX の電源を入れます。必ず配線後に電源を入れてください。

4. PC と VBOX を接続し、VBOX Setup ソフトウェアを起動します。 "IMU" 画面に入り、"Enable IMU Kalman filter"に√マークを入れます。

5. 赤枠で示した部分に、GPS アンテナから見た IMU4 の距離を入力してく ださい。 "Roof Mount"、"ADAS mode"は用途に応じて選択してくださ い。

IMU 補正の初期学習

IMU が正しく補正を行うためには、適切な初期学習を行う必要があります。 IMU の初期学習には、VBOX 起動時に行う**初期学習 1** と走行して行う**初期学習 2** があります。

初期学習 1

まず、IMU と VBOX3i を接続して電源を入れます。(必ず接続した後に電源を入れてください。) 正しく接続されていると、VBOX3i は IMU を認識します。 その後、VBOX3i は自動で衛星を捕捉して、30 秒の停車状態での初期学習 1 を行います。この期間、車を動かさないでください。 停車状態の初期学習 1 が終わると VBOX3i の IMU LED が緑色の点滅に変わります。

IMU04 LED	カラー			
	赤	オレンジ	禄	
Power	起動中です。	内部の温度チェック中です。 もし、温度が指定の範囲内 にない場合は、オレンジのまま点灯します。	正しく動作している状態です。	
Comms	通信ができていません。 IMU 補正を利用している場合、IMU データがシリアル通信で出力している状態です。		IMU データが CAN 通信で出力して	いる状態です。
VB3i LED	カラー			
	オレンジ 点灯	オレンジ 点滅	禄点滅	禄 点灯
IMU	IMU 補正は ON になって いるが、IMU が認識されて いない状態	衛星の捕捉が完了して、30 秒の初期学習中です。車 両を動かしてはいけません。動かしてしまった場合は、シス テムは再度 30 秒の初期学習を行います。	30 秒の初期学習が終了した状態 です。車両の動きをまだ確認してい ません。	車両の動きを感知して、IMU 補正 が働き始めた状態です。

<VB3i V1 の LED の表示> IMU 補正を ON にしている場合、SATS LED は点灯しません。 初期学習 1 を終え、車両が動き出すと SATS LED は通常の衛星捕捉数の表示になります。 IMU 補正を利用する場合、電源を入れてから車両を動かすまでに 60 秒程度お待ちください。

初期学習 2

VBOX3iの IMU の LED が緑色になったら、車両を走行させます。 テストを開始する前に以下の走行を実施すると、IMU 補正の学習が進み、システムは適切な補正を行うことが出来るようになります。

1. 8の字旋回 2周

2. 急加速・急ブレーキ 2本

これらの学習は、車両を長時間停車状態にしていた後に、再度テストを実施する場合も行う必要があります。

注意: この IMU 補正は、GPS 測定すべてのチャンネルを補正する効果があります。 速度に IMU 補正を適用するとブレーキ制動距離の結果に影響を与えるため、 ブレーキ試験を行う場合には利用しないでください。

VBOX 以外の CAN データロガーと共に IMU04 を使用する場合

IMU04 は様々な CAN データロガーで使用することが可能です。使用する際は、別売の RLCAB030-S ケーブル、および "VBOX Setup" ソフトウェアを用い て IMU04 のセットアップを行います。また、CAN 出力ケーブルとして、RLCAB034-S(別売)が必要です。

VBOX Setup ソフトウェアを使い IMU04 を設定する

- 1. 付属の RLCAB030-S ケーブルを使い、IMU04 を PC に接続します。
- 2. 適切な 12V 電源から IMU04 に電源を供給します。
- 3. VBOX Setup ソフトウェアを実行します。
- COM ポートを選択し、Connect ボタンをクリックします。COM ポ ートが不明の場合は、Windows の「デバイスマネージャ」で確認し て下さい。
- 5. 必要な変更を加え、[Write to unit] ボタンをクリックし、IMU04 に設 定を書き込みます。
- 6. 設定の変更を有効にするために、電源を落とし、再度電源を入れま す。

注: CAN を取得するためには、 120Ω の終端抵抗が必要です。 Timed mode では、データロガー側から Acknowledgement を返さないと、CAN 出力をしないので、ご注意ください。

RC Racelogic Con	fig 1.1.41	
	Settings	Load configuration Save configuration
General	Baud rate	Mode
	© 1000 kbps	Racelogic polled
Sottings		O User polled
Settings	S00.00 kbps (default)	Timed
	© 250.00 kbps	Extended identifiers
Channels	© 125.00 kbps	Use extended identifiers
	Data format	Timer
	32-bit float	Timer (ms) 10
	O Signed 32-bit integer	Tx count
	O Unsigned 32-bit integer	Tx count 2
	○ Signed 16-bit integer	Request / response ID (hex)
	O Unsigned 16-bit integer	Channel YawRate & X_Accel
	○ Racelogic float	Request 600 Response 600 Response
		Write to unit Close

CAN Mode

IMU04 は、以下の3つの モードのいずれかで動作します。

• Racelogic Polled $\pm - \ddot{k}$ • User Polled $\pm - \ddot{k}$ • Timed $\pm - \ddot{k}$

Racelogic Polled モード-デフォルトモード

IMU04 を VBOX データロガー と共に使用する場合のモードです。このモードを選択した場合、各パラメータを設定する必要は無く、設定しても有効にはなりません。

User Polled モード

このモードでは、他社製の CAN データロガーで IMU04 のデータを記録することができます。このモードでは、センサーからの出力タイミングを他の CAN データと同期するモードです。このモードを選択した場合は、以下のパラメータを全て設定する必要があります。("Timer"の設定はできません。)

- Baud Rate(ボーレート。125kbit/s、250kbit/s、500kbit/s、または 1Mbit/s から選択可能)
- Extended Identifiers(拡張 ID。False または True。標準 ID の場合は False、拡張 ID の場合は True を選択して下さい。)
- Request Identifiers (要求 ID。設定した要求 ID を受信した際に、応答 ID でデータを出力します。)
- Response Identifiers(応答 ID。設定した要求 ID を受信した際に、応答 ID でデータを出力します。)

Timed モード

このモードでは、他社製の CAN データロガーで IMU04 のデータを記録することができます。このモードでは、[Timer] で設定した間隔で CAN データを送 信します。このモードを選択した場合は以下のパラメータを全て設定する必要があります。(Request Identifiers の設定はできません。)

- Timer(出力データの時間間隔 [ミリ秒(ms)])
- Baud Rate(ボーレート。125kbit/s、250kbit/s、500kbit/s、または 1Mbit/s から選択可能)
- Extended Identifiers(拡張 ID。False または True。標準 ID の場合は False、拡張 ID の場合は True を選択して下さい。)
- Response Identifiers(応答 ID。応答 ID でデータを出力します。)

User PolledCAN モードおよび Timed CAN モードのデータフォーマット

IMU04 にはチャンネルが 7 つあります。

- □ チャンネル1 ヨーレート (°/s)
- □ チャンネル 2 前後加速度(G)
- □ チャンネル3 横加速度(G)
- □ チャンネル4 温度(°C)
- □ チャンネル5 ピッチレート (°/s)
- □ チャンネル6 □-ルレート (°/s)
- □ チャンネル7 垂直加速度(G)

各チャンネルのデータは「チャンネル1と2」、「チャンネル3と4」のように、2つのチャンネルを1つのIDで出力されます。チャンネルの組合せを変 更することはできません。チャンネルデータは、32ビットモトローラフォーマットで固定されています。各チャンネルは4バイトです。データパケット内 の最初の4 バイトは下位データチャンネル(チャンネル2)であり、2番目の4バイトは上位データチャンネル(チャンネル1)です。IMU03/YAW03の デフォルト設定(ID等)を含んでいる CAN データファイル(DBC ファイル)を Racelogic 社の HP からダウンロードすることも可能です。 http://www.vboxjapan.co.jp/VBOX/support/VBOX_Support.html

セットアップパラメータ

Timer

[Timer] の値はミリ秒(ms)です。この値が小さい場合にはデータ送信頻度が高まり、大きい場合には送信頻度が低くなります。10~65535 の値が入力可能です。

タイマー値 [ms]	サンプリング周波数 [Hz]
10	100
50	20
100	10
400	2.5
1000	1

Baud Rate(ボーレート)

[Baud Rate] で CAN メッセージの ビットレートを設定します。

Extended Identifiers(拡張 ID)

CAN ID には標準 ID と拡張 ID の 2 つのタイプの ID が存在します。標準 ID では、2048 個の異なる CAN ID が設定可能です。それに対して拡張 ID は、 436207616 個の異なる CAN ID が設定可能となります。標準 CAN ID(11 ビット)を利用する場合は、チェックマークを入れないようにして下さい。

Request Identifiers (要求 ID) および Response Identifiers (応答 ID)

要求 ID は、User Polled モードでのみ有効です。要求 ID と合致する CAN メッセージが受け取られると、IMU04 は対応するチャンネルデータを対応する応答 ID で送信します。

注:全チャンネルは同一の要求 ID を設定することもでき、そのため IMU04 は 1 件の CAN メッセージを 受け取ると全てのチャンネルで応答してしまいま す。通信データの混乱を避けるため、応答 ID は全て異なるように設定して下さい。

Timed モードでは、対応する応答 ID でデータを一定間隔で送信します。

標準 ID を使用する場合、 ID の最大値は 7FF です。これよりも大きい値を入力すると、正常に動作しませんのでご注意ください。不具合が起きてしまうの を避けるために、要求 ID および応答 ID を適切に設定し、各パラメータをセットアップする場合はセットアップパラメータ表に記載の値(有効値)を必ず 守って下さい。

データフォーマット

このオプションを使い、スタンドアロンモードで送られる際のデータのフォーマットを変更できます。以下のフォーマットオプションを利用可能です。

- ・IEEE 32-bit float デフォルト・32 bit signed integer(符号あり)
- ・16-bit signed integer(符号あり) ・32 bit unsigned integer (符号なし)
- ・16-bit unsigned integer (符号なし) ・ Racelogic float

セットアップパラメータ表

パラメータ	オプション	有効値	コメント
CAN モード	Racelogic Polled モード		VBOX 互換モード。 このモードでは、他のパラメータは無効です。
	User Polled モード		ボーレートを設定する必要があります。 拡張 ID を設定する必要があります。 要求 ID を設定する必要があります。 応答 ID を設定する必要があります。
	Timed モード		タイマーを設定する必要があります。 ボーレートを設定する必要があります。 拡張 ID を設定する必要があります。 応答 ID を設定する必要があります。
タイマー [ms]	(送信間隔:単位 ms)	10~65535	最小値は 10(100Hz)です。この値未満ではデータがエラーになる可能性があります。
ボーレート [kbit/s]	1Mbit/s	1000	
	500 kbit/s	500	"
	250 kbit/s	250	"
	125 kbit/s	125	"

パラメータ	オプション	有効値	イイメロ
拡張 ID	標準(11 bit)	False	要求および応答 ID の範囲は、0~ 0x7FF(0~2047)です。
	拡張(29 bit)	True	要求および応答 ID の範囲は、0~0x19FFFFF(0~436207615)です。
要求 ID(チャンネル 1 および 2)	(ユーザー定義 ID)	「拡張 ID」パラメータに依存	ヨーレート& 前後加速度
応答 ID(チャンネル 1 および 2)	(ユーザー定義 ID)	ű	ヨーレート& 前後加速度"
要求 ID(チャンネル 3 および 4)	(ユーザー定義 ID)	ű	横加速度&温度
応答 ID(チャンネル 3 および 4)	(ユーザー定義 ID)	ű	横加速度&温度
要求 ID(チャンネル 5 および 6)	(ユーザー定義 ID)	ű	ピッチレート&ロールレート(IMU03 にのみ適用)
応答 ID(チャンネル 5 および 6)	(ユーザー定義 ID)	ű	ピッチレート&ロールレート(IMU03 にのみ適用)
要求 ID(チャンネル 7)	(ユーザー定義 ID)	ű	垂直加速度(IMU03 にのみ適用)
応答 ID(チャンネル 7)	(ユーザー定義 ID)	ű	垂直加速度(IMU03 にのみ適用)
データフォーマット	IEEE 32 bit フロート		
	32 bit 符号なし整数	_	
	16 bit 符号付き整数	_	
	16 bit 符号なし整数	_	
	Racelogic フロート		
	32 bit 符号付き整数	_	

ファームウェアのアップグレード

Racelogic 社では、お客様からの要望やバグ修正などによりファームウェアを頻繁に改良しており、定期的にファームウェアのアップデートを推奨しています。

IMU04 のアップグレードファイルの拡張子は ".RUF" です。ファームウェアをアップグレードするには、下記の Racelogic ウェブサイトから最新のファー ムウェアファイルと Racelogic Upgrader ソフトウェアをダウンロードします。

http://www.velocitybox.co.uk/index.php/en/support/39-firmware.html

ファームウェアのアップデートの方法は、RLCAB030-S ケーブルを使い、IMU04 シリアルコネクタと PC を接続します。適切な 12V 電源から電源を取り、 PC 上でダウンロードされたアップグレードファイルをダブルクリックします。画面の指示に従い、アップグレードを完了します。

Racelogic 製品のファームウェアアップグレードに関してご質問がございましたら、<u>VBOXsupport@vboxjapan.co.jp</u>までご遠慮無くご連絡ください。

ユニット寸法

スペック

Specification	
Gyroscopes (Angular rate sensors)	
Dynamic range	Full-Scale: ±450 [°] /s
Nonlinearity	% of full scale: 0.01%
Resolution	16 bit ADC (0.014 '/s)
Bandwidth	50 Hz
Noise density	0.015 °/s/√Hz
Bias stability	±0.0035 °/s
Bias repeatability (1 year)	0.5 °/s
Accelerometers	
Range	±5G
Nonlinearity	% of full scale: 0.03 %
Resolution	16 bit ADC (0.15 mg)
Bandwidth	50 Hz
Noise density	150 μg/√Hz
Bias stability	40 µg
Bias repeatability (1 year)	0.005 g
Temperature Sensor	
Temperature calibration range	0°C to 55°C
Temperature resolution	0.1°C
Maximum Power Consumption	1.7W
Typical Power Consumption	1.3W

Voltage	7 – 30V DC.
Operating Temperature	-20 to +70 °C
Maximum Ratings (Shock)	Powered (0.5ms): 2000g

ピン配列

CAN / SER

Pin	I/O	Function	
1	0	TxD, serial data transmit- configuration- RS232	
2	1	RxD, serial data receive- configuration- RS232	
3	I/O	CAN high	5
4	I/O	CAN low	
5		+ V power 7V to 30V DC	
Chassis		Ground	4

CAN/KF

Pin	I/O	Function					
1	0	TxD, serial data transmit – RS232					
2	1	RxD, serial data receive – RS232					
3	I/O	CAN high					
4	I/O	CAN low					
5		+ V power 7V to 30V DC					
6	1	1PPS					
Chassis		Ground					

CAN BUS データフォーマット

各データチャンネルは、32 bit フロート(モトローラフォーマット)です。

	アップ	データ	byte														
ID**	デート	0		1		2		3		4		5		6		7	
		7654	3 2 10	7654	3 2 10	7654	43210	7654	43210	765	4 3 2 10	765	43210	7654	43210	7654	3 2 10
	速度	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB
0x600	10ms	ヨーレート							前後加速度								
0x601	10ms								温度								
0x602	10ms	ピッチレート						ロールレート									
0x603	10ms	垂直加速度															

* Timed モードでは、VBOX Setup ソフトウェアを使用して更新レートを変更することができます。

** デフォルトの ID です。上記ソフトウェアを使用して ID を変更できます。

IMU04 の CAN データベースは、Racelogic ウェブサイトの VBOX CAN Database から

ダウンロードできます。 (Vector Databace format:DBC ファイル)

お問合せ先

VBOX JAPAN 株式会社

222-0035 神奈川県横浜市港北区鳥山町 237 カーサー鳥山 202

Tel: 045-475-3703 Fax: 045-475-3704

Email: vboxsupport@vboxjapan.co.jp Web: www.vboxjapan.co.jp