
[image:]

VBOX API

Reference Manual
API for programming in .NET, Native C++, and COM compatible languages

This page is intentionally left blank

Contents
Introduction	4
Installing the VBOX API	4
.NET Projects	4
Other COM Compatible Languages	4
Native C++	5
API Commands	6
.NET	6
C++	7
Example API Calls	9
C#	9
C++	9
COM Interface	9
Successive API Calls	9
Contact Details	9

[bookmark: _Toc386466465][bookmark: _Toc406598111][bookmark: _Toc406598570][bookmark: _Toc406598707][bookmark: _Toc406599212][bookmark: _Toc387325211]

[bookmark: _Toc536804079]Introduction
An API is available to allow functions of a VBOX connected via USB to be accessed programmatically.

This document covers the basic principles of the API and information about the API methods. There is also sample code that demonstrates API usage.
[bookmark: _Toc386466466][bookmark: _Toc406598112][bookmark: _Toc406598571][bookmark: _Toc406598708][bookmark: _Toc406599213][bookmark: _Toc536804080]Installing the VBOX API
The Microsoft .NET framework 4.7.1 must be installed before you can use the API.

[bookmark: _Toc536804081].NET Projects
In order to access the VBOX API via your .NET project, first copy the following supplied files into your application directory:
· Racelogic.Compression.dll
· Racelogic.Core.dll
· Racelogic.DataSource.dll
· Racelogic.DataTypes.dll
· Racelogic.DataTypes.Win.dll
· Racelogic.FileRoutines.dll
· Racelogic.SetupApi.dll
· Racelogic.Utilities.dll
· System.Data.Common.dll
· System.Diagnostics.StackTrace.dll
· System.Diagnostics.Tracing.dll
· System.Globalization.Extensions.dll
· System.IO.Compression.dll
· System.Net.Http.dll
· System.Net.Sockets.dll
· System.Runtime.Serialization.Primitives.dll
· System.Security.Cryptography.Algorithms.dll
· System.Security.SecureString.dll
· System.Threading.Overlapped.dll
· System.Xml.XPath.XDocument.dll

Make a reference to Racelogic.SetupApi.dll in the usual way.

[bookmark: _Toc536804083]Native C++
For native C++ access to the API you will also need the following files:
· Racelogic.SetupApiCpp.dll
· Racelogic.SetupApiCpp.lib
· Racelogic.SetupApiCpp.h
· unmanagedSampleEventArgs.h

As in the .NET instructions the additional .dll will need to be placed alongside your project.
Assuming you are using Microsoft Visual Studio you will need to alter the following settings for any combination of “Configuration” and “Platform” you intend to use:
Under C/C++, “Additional Include Directories” will need the directories containing the relevant “.h” files adding to it.
You will also need to add information to the linker settings. “Racelogic.Setup.ApiCpp.lib” will need to be added to the “Additional Dependencies” setting and its containing folder will need to be added to the “Additional Library Directories” setting.

Due to the use of parameters of std namespace types it is important to ensure that the dlls referenced by your application match your build configuration. Failure to do this will result in unhandled exceptions.

The contained functions should then be accessible by adding the following lines to the top of the appropriate .cpp or .h files of your project.
#include “Racelogic.SetupApiCpp.h”
#include “unmanagedSampleEventArgs.h”

This will expose the exported methods listed in the “.h” files above. NOTE: Please ensure that you do not have the Preprocessor Definition “RACELOGIC_VBOX_API_DLL_EXPORTS” set as it will prevent the methods from being imported by your application.

The C++ portion of this API has been compiled with the calling convention “__stdcall”.
[bookmark: _Toc386466467][bookmark: _Toc406598113][bookmark: _Toc406598572][bookmark: _Toc406598709][bookmark: _Toc406599214]
[bookmark: _Toc536804082]Other COM Compatible Languages
From Windows, the API also supports integration from COM compatible languages such as Python, VBScript, C++ and VB6. To allow this, the Register.bat script in the “VBOX Setup API” folder needs to be run. Note that the API will need to be on a local drive as opposed to a network drive. On Windows 7 and above, this will need to be run as an administrator (right click and choose Run as Administrator from the context menu). Alternatively, you can run the RegAsm command manually from a command prompt as described in the Microsoft .NET documentation.

[bookmark: _Toc536804084]API Commands
The API consists of a number of classes. Each class provides access to a number of parameters and/or methods. Certain commands must be called before or after others. For example ‘Connect’ must be called before ‘BeginParse’.

[bookmark: _Toc536804085].NET
Below is a list of methods and parameters exposed by the .NET API class “VBoxSetuppApi”:

· bool Connect(string portName, out int serialNumber)
· Connects to a VBOX.
· Returns whether it was successful.
· portName is the port the unit is connected to. This is case sensitive.
· serialNumber, on return, contains the serial number of the connected unit.
· bool Disconnect()
· Disconnects from the VBOX and closes the port.
· Returns whether it was successful.
· bool GetConnectedModules(out int[] moduleSerialNumbers)
· Gets a list of the serial numbers of any connected modules.
· Returns whether it was successful.
· moduleSerialNumbers contains an array of the serial numbers of any connected modules.
· bool BeginParse(Action<object, ISampleEventArgs> onNewSample, out string[] channels, out int[] serialnumbers)
· Enables parsing of the VBOX serial data.
· Returns whether it was successful.
· onNewSample an action to take whenever a new sample is received.
· channels, on return, contains the list of channel names of the channels being logged.
· serialnumbers, on return, contains the list of serial numbers of the channels being logged.
· bool BeginParseCOM([MarshalAs(UnmanagedType.FunctionPtr)] SampleEventHandler onNewSample, out string[] channels, out int[] serialnumbers)
· void EndParse()
· Disables parsing of the VBOX serial data.
· bool GetExternalBatteryVoltage(out float voltage)
· Gets the external battery (or power supply) voltage.
· Returns whether it was successful.
· voltage, on return, contains the detected voltage.
· bool GetFirmwareVersion(out string version)
· Gets the firmware version of the connected VBOX.
· Returns whether it was successful.
· Version, on return, contains the version number.
· bool GetInternalBatteryVoltage(out float voltage)
· Gets the internal battery voltage
· Returns whether it was successful.
· voltage, on return, contains the detected voltage.
· string[] GetPortNames()
· Gets a list of all COM port names on the current PC.
· Returns an array of strings representing each detected port.
· bool LoadConfigurationFile(string fileName, out string error)
· Returns whether it was successful.
· error, on return, contains any error messages.
· event SampleEventHandler SampleEvent
ISampleEventArgs
· double[] Data { get; }
· byte Satellites { get; }
· A byte representing the number of satellites.
· bool Dgps { get; }
· bool BrakeTrigger { get; }
· bool DualAntenna { get; }
· double UtcTime { get; }
· double Latitude { get; }
· double Longitude { get; }
· double Speed { get; }
· double Heading { get; }
· double Height { get; }
· double VerticalVelocity { get; }
· double LongitudinalAcceleration { get; }
· double LateralAcceleration { get; }
· byte GlonassSatellites { get; }
· A byte representing the number of GLONASS satellites detected.
· byte GpsSatellites { get; }
· A byte representing the number of GPS satellites detected.
· short SerialNumber { get; }
· int KalmanFilterCode { get; }
· int SolutionType { get; }
· double VelocityQuality { get; }
· double TriggerEventTime { get; }
IEventsToCOM
· void OnNewSampleCOM(object sender, ISampleEventArgs e)

[bookmark: _Toc536804086]C++
A C++ wrapper has been created to provide API access from native C++. Below is a list of C++ methods exposed by the C++ Wrapper API, listed by containing class. All methods are in the RacelogicSetupApiCpp namespace.
[bookmark: _GoBack]Please refer to .NET section above for details on what each method does.
Any parameters whose name is preceded by &, such as &channels, function as out parameters.
class RacelogicSetupApiCpp
· RacelogicSetupApiCpp() {};
· ~RacelogicSetupApiCpp() {};
· bool BeginParse(void* (__stdcall *onNewSample) (UnmanagedSampleEventArgs args), std::vector<std::string> &channels, std::vector<int> &serialnumbers);
· bool Connect(std::string& portName, std::int32_t& serialNumber);
· bool Disconnect();
· void EndParse();
· bool GetConnectedModules(std::vector<std::int32_t>& moduleSerialNumbers);
· bool GetExternalBatteryVoltage(float& voltage);
· bool GetFirmwareVersion(std::string& version);
· bool GetInternalBatteryVoltage(float& voltage);
· std::vector<std::string> GetPortNames();
· bool LoadConfigurationFile(std::string fileName, std::string& error);
class UnmanagedSampleEventArgs
· UnmanagedSampleEventArgs(std::vector<double> DataArray, short Satellites, bool Dgps, 	bool BrakeTrigger, bool DualAntenna, double UtcTime, double Latitude, 		double Longitude, double Speed, double Heading, double Height, 		double VerticalVelocity, double LongitudinalAcceleration, 			double LateralAcceleration, short GlonassSatellites, short GpsSatellites, 			short SerialNumber, int KalmanFilterCode, int SolutionType, double VelocityQuality, 	double TriggerEventTime);
· ~UnmanagedSampleEventArgs();
· std::vector<double> GetData();
· short GetSatellites();
· bool GetDgps();
· bool GetBrakeTrigger();
· bool GetDualAntenna();
· double GetUtcTime();
· double GetLatitude();
· double GetLongitude();
· double GetSpeed();
· double GetHeading();
· double GetHeight();
· double GetVerticalVelocity();
· double GetLongitudinalAcceleration();
· double GetLateralAcceleration();
· short GetGlonassSatellites();
· short GetGpsSatellites();
· short GetSerialNumber();
· int32_t GetKalmanFilterCode();
· int32_t GetSolutionType();
· double GetVelocityQuality();
· double GetTriggerEventTime();

The main difference between the C++ and .NET API, is the data types used.
In both versions of the API certain method calls should occur prior to others to avoid unexpected behaviour. The simplest example of this would be the Connect and Disconnect methods which, with the exception of GetPortNames, should be called before and after any other methods respectively.
It is also worth noting that the onNewSample parameter of BeginParse will be called once per sample received. As such if computationally expensive logic is contained within it, performance could be adversely affected.

[bookmark: _Toc386466468][bookmark: _Toc406598114][bookmark: _Toc406598573][bookmark: _Toc406598710][bookmark: _Toc406599215][bookmark: _Toc536804087]Example API Calls
[bookmark: _Toc536804088]C#

[bookmark: _Toc536804089]C++
A sample console application has been included as a simple demonstration of usage of the API. This takes the form of VboxSetupApiCppTestApp.sln and associated pre-compiled versions.
[bookmark: _Toc415751841][bookmark: _Toc536804090]COM Interface
The COM interface exposed by the API allows control from non Microsoft.NET languages such as VBScript that are COM compatible.

N.B. Any scripts written must be run in a 32 bit environment on 64 bit Windows. This can be achieved by calling c:\windows\syswow64\cscript.exe PathToScript.vbs
[bookmark: _Toc406598119][bookmark: _Toc406598578][bookmark: _Toc406598715][bookmark: _Toc406599220][bookmark: _Toc536804091]Successive API Calls
There can on occasions be issues with making multiple commands in quick succession. Should such issues be encountered it is recommended that a delay (i.e. 100ms) is introduced between API method calls to resolve.
[bookmark: _Toc406598121][bookmark: _Toc406598580][bookmark: _Toc406598717][bookmark: _Toc406599222][bookmark: _Toc536804092]Contact Details
Racelogic Head Office
Unit 10, Swan Business Centre,
Osier Way Buckingham
Bucks MK18 1TB
United Kingdom

Contact: Lee Cordell

Tel: +44 1280 823 803
Fax: +44 1280 823 595

Email: support@racelogic.co.uk

Document Version Control

	Revision
	Description
	Date

	1.0
	Initial version
	18/08/2017

	1.1
	Serial data access added, native C++ access added
	29/01/2019

	
	

Page | 5 01 February 2019
image1.emf

